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Abstract. In some cases, big data bunches are in the form of Time
Series (TS), where the occurrence of complex TS events are rarely pre-
sented. In this scenario, learning algorithms need to cope with the TS
data balancing problem, which has been barely studied for TS datasets.
This research addresses this issue, describing a very simple TS extension
of the well-known SMOTE algorithm for balancing datasets. To validate
the proposal, it is applied to a realistic dataset publicly available con-
taining epilepsy-related TS. A study on the characteristics of the dataset
before and after the performance of this TS balancing algorithm is per-
formed, showing evidence on the requirements for the research on this
topic, the energy efficiency of the algorithm and the TS generation pro-
cess among them.
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1 Introduction

In recent years, new technological challenges and opportunities are being dis-
covered, such as Industry 4.0, Internet of the Things or e-Health, where vast
amounts of data are produced and gathered. In some of the cases, these big data
bunches are in the form of Time Series (TS). Such cases include the management
of sensory systems located on wearable devices, as in the problems of human ac-
tivity recognition and abnormal movement detection [1,2,3]. Furthermore, TS
datasets have become multivariate datasets, which makes the data analysis even
more complex.

In this context, when leaning models for the detection of some complex
events, the problem of unbalanced data arises: there are many more TS seg-
ments belonging to normal class than those belonging to the abnormal class to
be detected. For instance, in the problem of epilepsy seizure detection [3,4], the
occurrence of a seizure might be once in a month or even less.

Most previous work on the dataset balancing problem is focused on classi-
cal datasets, where a sample includes an atomic value for each of the features.



These balancing techniques rely on oversampling the minority class (mC) or un-
dersampling the majority classes (MC); however, as long as oversampling does
not produce information losses, it is preferred over undersampling.

Some valid alternatives have also been published, coping with imbalanced
problems specific algorithms [5], or proposing ensembles for the mC together with
a kind of undersampling of the MC [6]. Examples of oversampling techniques in-
clude well-known algorithms such as SMOTE (Synthetic Minority Over-sampling
Technique [7,8]), ADASYN (ADAptive SYNthetic Sampling, [9]) ADOMS (Ad-
justing the Direction Of the synthetic Minority clasS examples [10]) or SPIDER
(Selective Preprocessing of Imbalanced Data [11]).

However, the problem of balancing TS datasets has received scant attention
from the scientific community up to now. The published approaches focused on
univariate TS problems [12,13,14,15], where the known data sequence labels are
clearly biased to the MC. Therefore, the solutions rely on drawing new syn-
thetic atomic values based on any of the above mentioned algorithms. On the
other hand, Koknar et al [16] proposed the balancing of univariate TS based
on suggesting ghost points. These ghosts points belong to the domain space of
TS distances. With the associated distance matrix an SVM classifier is trained;
allowing to generate a new TS and assigning it to a class. Different TS distance
measurements were proposed, such as the Dynamic Time Warping (DTW). Be-
sides, in a multivariate TS dataset problem, each sample in the TS dataset
includes a TS for each feature. Moreover, the sample is assigned a class, but
also a TS is attached as the labelling TS for that sample. From now on, we
consider all the TS features from a sample with the same length and sampling
frequency; however, the variability in these factors needs further study. This
study addresses the multivariate TS datasets balancing problem, extending the
well-known SMOTE algorithm to cope with multivariate TS. The experimenta-
tion will analyze the distortion in the dataset due to the inclusion of the new TS
samples. This study is structured as follows. Next section outlines the SMOTE
algorithm, while the design issues and possible solutions are given in Sect. 3.
Experimentation and the discussion on the obtained results are coped in Sect.
4. Finally, the main conclusions are drawn in Sect. 5.

2 The SMOTE Algorithm

The SMOTE algorithm is an oversampling method [7] where new synthetic data
are generated to balance a given dataset. In order to do that, each sample from
the mC is randomly combined with each one of its nearest neighbors. This
method assumes a two-class problem, however, it can be easily extended to
multi-class problems [17].

The original SMOTE algorithm from the seminal paper [7] is shown in Algo-
rithm 1. The parameters of this method include the number of nearest neighbors
to be considered (k, a default value of k = 5 has been proposed), the number
of samples belonging to the mC (T ) and the number of synthetic samples to
be generated for each original sample from the mC (N). This parameter N is



given as a percentage; values smaller than 100% reduces the original minority
subset and produces a new dataset of the same size as the original. Whenever
N > 100% means that N/100 synthetic samples are to be generated for each
one of the samples from the mC.

Algorithm 1 The SMOTE original algorithm. Three
parameters (T, N, k) are needed, as stated above.
SMOTE(T, N, k)

1: if N < 100 then
2: Randomize the T minority class samples
3: T = (N / 100) * T
4: N = 100
5: end if
6: N = int( N / 100 )
7: numattrs = Number of attributes
8: Sample[][]: array for original minority class samples
9: newindex: counts the number of generated synthetic samples

10: Synthetic[][]= array for synthetic samples
11: for i = 1 : T do
12: Compute the k nearest neighbors of sample i, saving the indexes in nnarray
13: Populate(N, i, nnarray)
14: end for
15: function Populate(N, i, nnarray)
16: while N 6= 0 do
17: Choose a random number nn in {1, k}
18: for attr = 1 : numattrs do
19: dif = Sample[nnarray[nn]][attr]-Sample[i][attr]
20: gap = random number in {0, 1}
21: Synthetic[newindex][attr] = Sample[i][attr] + gap * dif
22: end for
23: newindex ++
24: N = N - 1
25: end while
26: end function

As it can be seen in Algorithm 1, SMOTE takes a sample and searches for
some neighbors; each synthetic sample is generated as a random linear combina-
tion of the two considered samples. This method has been successfully tested on
different domains; and plenty of different versions have been published [8]. Some
improvements on the original algorithm include i) cleaning the new dataset of
mC Tomek links producing the SMOTE+Tomek links and ii) cleaning the whole
dataset of Tomek links, known as SMOTE-ENN. A Tomek link is a sample from
one class that is included in the counterpart class space. Formally speaking, a pair
of samples Ei and Ej -labelled with different classes- forms a Tomek link if there
no exists a sample Ek such that d(Ei, Ek) < d(Ei, Ej) or d(Ej , Ek) < d(Ei, Ej),



with d being the distance function. However, these method are a sort of de-
noising stage, and that is the reason why they are not considered in this study.

3 Tackling the TS Balancing Problem through
AVG TS SMOTE

At least two main concerns have to be solved in order to allow the SMOTE
algorithm to cope with TS datasets. The first one is related to the method
for choosing the parents TS samples to mate, while the second focuses on the
generation of the new TS sample.

When choosing the two TS samples that will be used for generating the new
TS offspring, TS grouping according to some measurement should be considered.
The original SMOTE algorithm randomly selects the parents for mating among
those belonging to the mC. However, different and more advanced solutions
can be considered; for instance, the solution proposed in ADASYN [9], where
the parents are randomly chosen according to the distribution of the size of
the neighborhood, is totally valid as well. It seems, according to the published
results for the different SMOTE-based flavors, that problem-oriented heuristics
might be the best solution for each problem. An example of such heuristic can
be grouping the TS samples for the mC using the mean value of the Phan et al
distance [18]; afterwards, two different groups are randomly chosen; finally, one
TS sample is chosen from each one of the two candidate groups. Nevertheless,
the best performance of this distance measurement is obtained when the length
of the TS is bounded to less than a relatively small value.

On the other hand, the generation of a new TS when oversampling is not
a simple task: as long as multivariate TS are considered, the new TS sample
will need a TS for each one of the available features. For each feature to be
generated, a combination of the parents’ same feature should be performed.
Furthermore, the combination must be coherent for all the features considered
as a single sample. Finally, the TS class has to be generated as well, which is
much of a compromise. Again, general algorithms can be provided, but it should
be expected that specific heuristic are eventually needed in order to obtain a
better performance.

In present study, a very simple adaptation for such problem is proposed,
referred as AVG TS SMOTE -the name stands on the idea of the generation
of a new TS as the average of the two parents-. The selection of the parents is
performed by random selection among the TS samples belonging to the minority
class -as in SMOTE-. The generation of a new TS sample is performed as follows:

– For each feature, the average of the corresponding TS from the parents is
computed.

– Each of the values of the class TS is calculated as the maximum of the values
from the two parents.

– The length of the new TS sample, for every feature and for class TS, is
bounded to the shortest of the two parents.



4 Experiments and Results

4.1 Experimental Setup

For this experimentation, a real world TS dataset obtained from the simulation
of epileptic seizures is used; this dataset is publicly available at [3,19]. An epilep-
tic seizure is a clinical manifestation that has its origin in abnormal electrical
activity from groups of cortical neurons of variable size. Basically, there are two
main types of epileptic seizures: generalized seizures and focal seizures. In both,
there are subtypes with and without motor activity. In this study, we focus on
the focal myoclonic seizure -repeated bursting movements of one limb, the upper
and lower limbs of one body side or a combination of limb and facial movements.

The above referred TS dataset was gathered following a previously defined
and very strict protocol, defining a set of activities, namely, the simulation of
the epileptic convulsions and three activities: running, sawing and walking -
either gesturing while walking slowly or normal walking at different paces. A
wearable triaxial accelerometer sensor (3DACM) included in a bracelet placed
on the affected wrist measured the participant movements.

The bracelets have wireless data sampling capabilities at a rate of 16 Hz,
having the 3DACM a range of 2× g. Up to 6 healthy participants, all of whom
remained anonymous, successfully completed this experiment, each running 10
trials of each activity. The ages of the participants ranged from 22 to 47, with
four participants of around 40 years old. One participant out of six was female,
and the eldest was left-handed. An identification number was given to each Time
Series (TS), including information fields on participant ID, the number of trials,
the activity, etc.

The acceleration has been filtered and processed, becoming into a three vari-
able TS dataset: the features are depicted in Table 1: the Signal-Magnitude Area
(SMA), the Amount of Movement (AoM) and the Time between Peaks (TbP).
The complete pre-processing have been described in [3].

This TS dataset, consisting on TS samples of three TS each -SMA, AoM
and TbP- {TSs}, with the label for each activity {cs} and with the TS for each
timestamp label {Cs}, has been used in this experimentation.This original TS
dataset is named ORIG, while the TS dataset after applying AVG TS SMOTE
is named SMT.

To select the number of TS samples to be added to the dataset, the following
criteria was used. In an imbalanced dataset, there exists R = 3 times more
examples belonging to the MC class than to the mC class for the s data source.
So, balancing the number of samples for both classes means injecting (R1) ×
|mCs| new TS samples belonging to the mC.

The next experimentation focuses on analyzing the correlation between each
feature and the class for the ORIG and the SMT datasets. The resulting TS
dataset includes data from 6 participants, and for each participant up to 40 TS
samples are included. Each TS sample includes, as stated in the introduction,
three TS features -SMA, AoM and TbP-, the class label and the class TS.



Transformation Calculation

SMAt(s) 1
w

∑w−1

i=1
(
∑

c∈{x,y,z} |bc,t−1|)
AoMt(s)

∑i=w−1

i=0

∑
c∈{x,y,z} |max(bc,t−i)

−min(bc,t−i)|
TbPt(s) Computed with the following algorithm:

1.- Find the sequences with value higher
than mean+K*std within the window
(K = 0.9)

2.- Keep the rising points from each of
these sequences

3.- Measure the mean time between them
Table 1. The transformations of the components of the acceleration, where bc,i stands
for the body acceleration.

4.2 Correlation between each feature and the class

Two different measurements have been applied in this study in order to assess
the relationship between the distribution of the ORIG and the SMT datasets,
namely: the Pearson Correlation (ρX,Y , Eq. 1) coefficient and the Mutual In-
formation (MI(X,Y ), Eq. 2); where cov is the covariance, σX is the standard
deviation of X, p(x) is the probability of the event x and p(x, y) is the conditional
probability of x given y.

ρX,Y =
cov(X,Y )

σXσY
(1)

MI(X,Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log

(
p(x, y)

p(x) p(y)

)
(2)

The aggregated results for the six participants are shown in Table 2; however,
only the boxplot for participant number 1 is included in Fig. 1. Table 3 shows the
Wilcoxon test obtained results. The null hypothesis is that the data obtained for
the ρ(feature, class) or the MI(feature, class) calculated for the ORIG dataset
or calculated for the SMT dataset belongs to the same distribution. These results
suggest nothing found against the truth of the null hypothesis.

Fig. 2 shows an example of how the new (synthetic) TS have been generated:
the ability of the method to generate TS that highly resembles the original
parents is remarkable. Nevertheless, in this study all the TS have been sampled
using a very strict protocol, with a high control of the timing in each stage.
Therefore, the TS do not differ too much from one to another; in other words,
the generation of new synthetic TS was not as challenging as in other situations.
However, this is an issue when facing the same problem of generating synthetic
TS in different domains, or even in the same domain, in different contexts -such
as in everyday life- where the TS are not so similar, even totally different. In
these cases, different strategies for the generation of TS need to be addressed.

On the other hand, these new strategies should also consider the time and
the complexity in generating a new TS sample. The main reason for that is that



Fig. 1. Correlations between the class and the features for participant 1. From left to
right, first for ORIG and then for SMT datasets, the results for ORIG-SMA, SMT-
SMA, ORIG-AoM, SMT-AoM, ORIG-TbP and SMT-AoM.

a TS may be a short sequence, but it can be long enough. Any greedy strategy
may work in the first case, but the longer the TS the worse the performance
would be. Therefore, analysing energy efficiency concepts on the design of the
TS generation strategy would eventually introduce more robust an scalable so-
lutions.

5 Conclusions

In this study, the problem of balancing TS datasets is faced. Despite the effort in
the development of balancing algorithms, the problem has been barely studied
for the case of sets of TS. In this research, a simple yet efficient extension for
the well-known SMOTE algorithm is detailed. The AVG TS SMOTE extension
is based on three ideas: i) For each feature, the average of the corresponding TS
from the parents is computed; ii) The class TS is calculated with the maximum
of the values from the two parents; and iii) The length of the new TS sample,
for every feature and for class TS, is bounded to the shortest of the two parents.

The experimentation shows the new balanced TS dataset is statistically sim-
ilar to the original one when measured with the Pearson Correlation, while at
the same time the new synthetic TS perform realistically and homogeneously.
However, more research is needed to obtain a valid TS generation method that
maintains the TS dataset statistical information. Nevertheless, two main con-
cerns arose after: on the one hand, the need of good TS generation strategies on
uncontrolled contexts; on the other hand, the requirement of considering energy
efficiency issues in the design of such strategies. These two concerns are to be
addressed in future work.



Pearson Correlation

SMA AoM TbP

Participant ORIG SMT ORIG SMT ORIG SMT

1 0.97/0.01 0.96/0.02 0.95/0.02 0.95/0.01 0.82/0.05 0.82/0.05

2 0.97/0.01 0.96/0.02 0.94/0.03 0.95/0.02 0.83/0.03 0.83/0.03

3 0.96/0.02 0.96/0.02 0.92/0.04 0.93/0.03 0.73/0.06 0.76/0.06

4 0.98/0.00 0.98/0.01 0.96/0.01 0.97/0.01 0.81/0.07 0.83/0.05

5 0.96/0.01 0.95/0.02 0.94/0.01 0.94/0.02 0.78/0.10 0.80/0.08

6 0.97/0.01 0.96/0.01 0.97/0.02 0.98/0.02 0.82/0.03 0.82/0.03

Mutual Information

SMA AoM TbP

Participant ORIG SMT ORIG SMT ORIG SMT

1 0.99/0.02 0.99/0.01 0.99/0.02 0.99/0.01 0.40/0.13 0.62/0.20

2 0.98/0.01 0.99/0.01 0.92/0.04 0.95/0.04 0.20/0.09 0.63/0.23

3 0.98/0.04 0.99/0.02 0.94/0.06 0.97/0.04 0.23/0.07 0.53/0.24

4 0.99/0.00 0.99/0.00 0.96/0.04 0.98/0.03 0.35/0.18 0.64/0.23

5 0.97/0.02 0.98/0.02 0.95/0.05 0.97/0.04 0.12/0.05 0.48/0.31

6 0.99/0.01 0.99/0.01 0.97/0.05 0.98/0.04 0.66/0.07 0.78/0.10
Table 2. Correlation measurements for the ORIG and SMT datasets, for each partic-
ipant. Each cell includes the mean and the standard deviation statistics.
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